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1. INTRODUCTION

An outstanding problem in statistical mechanical lattice models remains
the calculation of the order parameters of the two-dimensional solvable
chiral N-state Potts model. This model was originally formulated as a one-
dimensional quantum hamiltonian(1-3) and later as a two-dimensional
classical lattice model in statistical mechanics.(4-6) It is "solvable" in the
sense that it satisfies the star-triangle relations, and indeed the free energy
has been calculated.(7-9)

For previously solved models, the order parameters can also be readily
calculated by using the corner transfer matrix approach.(10) Surprisingly,
this method completely fails for the chiral Potts model, due to the lack of
the difference property.(11) This situation is particularly tantalising because
there is an intriguingly simple conjecture for the order parameter. If a is a
spin deep inside the lattice and ca = e x p ( 2 m / N ) , then for r = 0,..., N,

' Theoretical Physics, I.A.S., and School of Mathematical Sciences, The Australian National
University, Canberra, A.C.T. 0200, Australia.

499

0022-4715/98/0500-0499$15.00/0 © 1998 Plenum Publishing Corporation

Functional Relations for the Order Parameters of
the Chiral Potts Model

R. J. Baxter1

Received November 24, 1997: final March 3, 1998

Following the method of Jimbo, Miwa, and others, we obtain functional rela-
tions for the order parameters of the chiral Potts model. We have not yet solved
these relations. Here we discuss their properties and show how one should
beware of spurious solutions.

KEY WORDS: Statistical mechanics; lattice models; chiral Potts model;
spontaneous magnetization; functional relations.



(Eq. 3.13 of ref. 2, Eq. 1.20 of ref. 12, Eq. 15 of ref. 13, /? and 1 therein being
the k' of this paper; the system is to be ferromagnetically ordered, which
implies 0 < k' < 1). This k' is a temperature-like variable: it varies from
zero at zero temperature to 1 at criticality. For N=3 the conjecture (1) has
been verified by Howes et al.(2) to order k'13, and to order k'15 by the
author.(11) For general N it has been verified to order k'5.(12)

Jimbo, Miwa, and Nakayashiki(14) have invented an alternative (but
related) method, which we may call the "broken rapidity line" method.
This has been developed by others(15-181) including Davies and Peschel.(19)

In this one generalizes the local one-spin correlations and derives func-
tional relations for the generalized function.

Here we obtain these relations for a general solvable edge-interaction
model. We specialize these firstly to models with ZN-symmetry, and then to
the chiral Potts model. The resulting equations have been reported in ref. 20.

Such functional relations are sometimes referred to as "difference equa-
tions." This is rather misleading as difference equations usually apply to
functions whose domain is a set of integers,21 whereas these equations have
the complex plane as their domain. They resemble the periodicity relation
f(z + 1) = f ( z ) , rather than the difference equation f(n + 1) = /(n)• Such an
equation does not define /(z): it merely imposes the condition that f(z) be
periodic of period 1. One needs further information in some basic domain:
for instance, if one is told that /(z) is analytic in the vertical strip
0 < Re z ^ 1 and its derivative is Fourier analyzable in the vertical direction
inside this strip, then it follows that /(z) is a constant. Another such func-
tional relation is the inversion relation (or unitarity condition) for the free
energy.(10,22) As with this relation, we need appropriate analyticity infor-
mation in some basic domain for the relations to define the function. At
present we do not have such information for the chiral Potts model.

Another problem is a technical one. For previously solved models with
the rapidity difference property, one can solve the relations by Fourier
transforms or Laurent expansions: such a technique has not as yet been
developed for the chiral Potts model.

As an illustration of the first difficulty, we present a simple algebraic
function which satisfies all the relations but yields a result for Jtr which
differs by a power N/2 from the conjecture (1). This difference is manifest
at order k'2, to which order (1) is certainly correct. The algebraic solution
is therefore wrong. (There are other examples in the literature of finding
wrong solutions of functional relations: see ref. 23.)

It does seem likely that the generalized correlation function is a
meromorphic function on some extended Riemann surface, with poles and
zeros only at certain known locations. We discuss a possible structure of
these poles and zeros. In a subsequent paper we intend to discuss the
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hyperelliptic function parametrization of the relations for the N = 3
case,(24,25) and present some short series expansion results that we hope
will assist the search for the correct solution.

2. FORMULATION

A quite general way of formulating a solvable edge-interaction model
is to consider a set of directed lines forming a graph £ of the type shown
in Fig. 1.

The lines (in this case six) head generally from the bottom of the
graph to the top, intersecting one another on the way. They can go locally
downwards, but there can be no closed directed paths in y. (This means
that one can always distort £, without changing its topology, so that lines
always head upwards.) In particular, two lines can cross as in Fig. 2a, but
not as in Fig. 2b.

Now shade alternate faces of £, as in Fig. 3. Form another graph g by
placing a site in each unshaded face, with edges connecting sites belonging
to faces that touch at a corner. These sites and edges of g are represented
in Fig. 3 by circles and heavy solid lines, respectively. For each intersection
of lines in £, there is an edge of g passing through it, and conversely.
g is the "medial" graph of g (pp. 47, 124 of ref. 26).

Now we define a statistical mechanical spin model on $. With each line
of & associate a "rapidity" p. On each site i of g place a spin <i, taking
some set of values: here we shall take <i = 0,..., N— 1, where N is the
number of states available to each spin.

Each edge of G is either of the first type in Fig. 4, or the second. Let
a, b be the spins at the end sites and p, q the rapidities of the associated

Fig. 1. A set of directed lines going from the bottom to the top of the figure.
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lines of Sf, arranged as in Fig. 4. Then if the edge is of the first type, the
spins a, b interact with Boltzmann weight function W p q (a , b). If the edge is
of the second type, they interact with weight W p q (a , b). In general there
may also be a self-interaction rapidity-independent weight S(a) for each
spin a (as in the Kashiwira-Miwa model(27)). The partition function is

where the first product is over all sites /, the second is over all edges (/, j)
of the first type, the third over all edges (k, I) of the second type, and the
sum is over all values of all the spins.

Fig. 3. The graph ^ formed by shading alternate faced of Fig. 1 and putting sites on the
unshaded faces.

Fig. 2. (a) An allowed line configuration; (b) a non-allowed configuration: there is a closed
directed path from A to B to A, and another from B to C to B.
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Averages (or expectation values) are calculated in the usual way. In
particular, the expectation value of a function / of the spin <TO is

3.1. Star-Triangle Relations

We require that the functions W, W satisfy the two star-triangle rela-
tions(61)

for all values of the three spins a, b, c and all rapidities p, q, r. The sides of
the first relation are the partition functions of the two graphs in Fig. 5, the
"external" spins a, b, c being held fixed. For the second relation, reverse all
arrows.

Fig. 4. The two types of edge on g.

In this paper we consider a ferromagnetic model, where like adjacent
spins are energetically favoured, and in which one of the possible ground
states has all spins zero. To favour this state we set all boundary spins to
be zero. (In general the boundary spins should be set to their values in the
chosen ground state.)
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Fig. 5. The first of the star-triangle relations (4).

Fig. 6. The first inversion relation (5) .

Baxter

We also require that the the functions satisfy the inversion relations

These relations are depicted graphically in Figs. 6 and 7.
The spin-independent factors Rpqr, kpq can be obtained by regarding

the equations as the elements (b, c) or (a, b) of a matrix equation, any
other external spin being held fixed, writing the expressions in terms of
matrix products and taking determinants.(28) This gives
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Fig. 7. The second inversion relation (5) .
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where

In fact it imposes restrictions on the products of Wpq(a, b) over b, for given
a (and over a, for given b). These restrictions are satisfied automatically for
the ZN-invariant models we shall be considering, so we do not dwell on
this point.

The vital point about these relations (4) and (5) is that they ensure
that the partition function Z is unchanged (apart from simple S and fpq)
factors by continuously moving the the lines of y (keeping their boundary
positions fixed), so long as £ remains directed.

This last qualification is important: no closed directed paths are
allowed to appear, as in Fig. 2b. Note that the triangle in Fig. 5 does not
contain such a path: there is no star-triangle relation where the arrows
follow one another round the central rapidity triangle. Nor is there any
inversion relation where the arrows follow one another round the central
two-sided face, as they do in parts of Fig. 2b.

The expectation value < f ( T O ) > is also unchanged by such moves—in
fact strictly unchanged because the S and fpq factors cancel out of Eq. 3—
provided that no line moves across the spin <TO. If a0 is deep inside a very
large graph y, then any given line can still be moved an arbitrarily long
way from a0. If all the Boltzmann weights are positive real, then by physi-
cal arguments we expect </(<TO)> to be independent of effects far removed
from site 0, and hence in this large-lattice limit
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Fig. 8. An allowed arrow reversal: note that the lines q1,..., qm must all point to the left.

It follows that the weights in Fig. 4 are unchanged by reversing the
vertical arrow and changing p to Rp (keeping the spins a, b fixed). The two
directed line configurations in Fig. 8 are therefore equivalent (for both of
the possible alternate shadings of the faces).

3. GENERALIZED LOCAL CORRELATION FUNCTION

Now we focus on the square lattice. In Fig. 9 we have drawn a square
lattice 3? of rapidity lines. It is directed: all lines are directed generally from
the SE up to the NW (to align with Fig. 1, rotate through 45°). The
associated graph fS is to be drawn on the unshaded faces of £: we have
indicated only one site, with spin a. If this spin is held fixed, the partition

Similarly, </(<70)> should be independent of the arrangement of the lines
in <£, so it should be "universal": the same for any allowed graph: for
instance 'S may be the square, triangular or honeycomb lattice. (These
arguments are given in less generality in ref. 29.)

While this makes it all the more interesting to calculate </(CTO)>> it
presents a difficulty: it is hard to see how one can write down a functional
equation that at least partially defines </(a0)> (for the free energy such a
relation follows easily from the inversion relations in Eq. 5). A solution to
this problem has been given by ref. 14 and will be discussed in the next
section. First we need one more property of Wpq and Wpl: there exists
an operation R which takes a rapidity p to another rapidity Rp such
that



Functional Relations for Order Parameters of Chiral Potts Model

Fig. 9. The square lattice with a broken horizontal rapidity line.

function is a function Z(a) of a. If it is allowed to take all values, the prob-
ability that the spin has value a is
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Jimbo, Miwa, and Nakayashiki proposed an ingenious trick.( 1 4 - I 8 ) We
use this here, our approach being related to that of Davies and Peschel.(19)

Consider the horizontal line immediately below the spin a. We break this
in the middle, immediately adjacent to a, as indicated in the figure. Let us
call the two resulting line segments the "special" lines. Assign different
rapidities p, q to them, and rapidities p', q' to the other "background" lines,
as indicated in Fig. 9. Then any of the background lines can be shifted (by
a sequence of allowed star-triangle and inversion crossing moves (4) and
(5) ) to the boundary, so in the limit when Z£ is large we expect F(a) to be
independent of p' and q'.

On the other hand, the break in the special line prevents us from
moving it away from a (in fact the break must remain adjacent to a), so
F(a) can and does depend on p and q:

Of course, if p = q, then there is no need for the break in the special
line, so it too can then be removed to the boundary, giving
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3.1. Rotation Symmetries

We return to considering the general situation, when the rapidities p, q
of the special line segments are different and their join has to remain adja-
cent to a. We establish three rotation symmetries, which are functional
relations satisfied by F p q ( a ) .

We are permitted to rotate them around a, so long as we take care to
maintain y as a directed graph. In particular no two anti-parallel lines
must be allowed to cross, as in Fig. 2b. More precisely, we can deform the
special line segment q as in Fig. 10, still maintaining fS as a directed graph.
By pushing the upper and right-hand parts of this deformed curve to the
boundary, the effect is to rotate q through 90° in the widdershins direction,
as in Fig. 11. (From now on we only show the special line segments in our
figures, omitting the background lines, except in Fig. 14.)

The line segment q then points downwards, so is anti-parallel to all the
background vertical lines. This means we cannot push it any further to the
left.

To get round this difficulty we use the equivalence of Fig. 8, and
reverse the direction of the arrow, while also replacing q by R~lq, as in

Fig. 10. An allowed deformation of the line segment q into the upper-right quadrant. One
can keep pushing it up and to the right until it consists of an arc at the boundary plus a verti-
cal line pointing downwards to the spin a.

Baxter

This function Fpl,(a) is the usual probability of a central spin being in
state a, so



Functional Relations for Order Parameters of Chiral Potts Model 509

Fig. 11. We can then make two further 90° rotations, as indicated, until the
line is beneath the central site a, pointing downwards.

Again the line is anti-parallel to the vertical background lines and we
can rotate (in this case push the line to the right) no further. Once more
we use the equivalence of Fig. 8, replacing the rapidity now by R 'q. One
more 90° rotation returns the line to its original position and direction.
However, q has been replaced by R 2q and the line segment has made a
complete widdershins rotation round a. Allowing for these rotations, all the
single-line segment configurations in Fig. 11 have the same probability.

Similar arguments apply to rotating p: in fact valid figures for this line
segment can be obtained from Fig. 11 simply by replacing q by Rp.

We now use these rotation invariances to obtain three functional rela-
tions satisfied by F p q ( a ) . From Fig. 11, all the configurations of the two
special line segments shown in Figs. 12 and 13 have the same probability
F p q ( a ) . However, the first configuration in Fig. 12 can obviously be
obtained from the third by merely replacing p, q by R2p, R2q, so

Fig. 12. Three configurations of the special line segments all with probability F p q ( a ) .

Fig. 11. Rotations of the line segment q.
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Similarly, the first configuration in Fig. 13 can be obtained from the
second by replacing p, q by Rq, R - 1 p , so (replacing p by Rp)

The fourth configuration in Fig. 13 differs from the third in that the
special line has wrapped a complete additional turn round the spin a (this
turn being inside any background lines round a). This means that a is one-
valent: it's only neighbour is the site designated as b in the figure. From
Fig. 4, the edge between a and b has weight function WpiR-\q(a, b). If spin
a and this edge is removed, the remaining graph is the same as the third
configuration, but with p, q, a replaced by R~[q, Rp, b. Replacing q by Rq,
it follows that

where <JW is some normalization factor, independent of a.
In Fig. 14 we have drawn the first configuration of Fig. 13, including

the background rapidity lines nearest to the spin a, and the nearby sites
and edges of fS.

3.2. Z^-Symmetric Models

The above remarks apply to any edge-interaction lattice model which
is "solvable" in the sense that it satisfies the Yang-Baxter relations, more

Fig. 13. More configurations of the special line segments with probability Fn(a).
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Fig. 14. The first configuration of Fig. 13, showing the background rapidity lines and the
graph G.

precisely the star-triangle relations (4) and the inversion relations (5). For
example, they apply to the Kashiwara-Miwa model.(2?l

From now on we specialize to models which are Z^-symmetric, i.e.,
Wpll(a, b) and Wp(l(a, b) depend on a and b only via their difference,
modulo N:

511

where Wpv(n)= Wpv(n + N) and Wpll(n)= WM(n + N\ for all integers n.
Also,

We continue to allow the possibility that the model is chiral, i.e.,
Wpll(n}±Wl>cl(N-n} and Wp<l(n) * W^N-n).

In this case the second of the star-triangle relations can be obtained
from the first by negating all the spins (more strictly, by replacing each
spin a by T V - I — a ) , so there is only one such relation. From (9),
WRp. Rl/(n)=WM(-n) and WRp< Rq(n) = Wpll( -n), so replacing each
rapidity p by Rp is equivalent to negating all spins (modulo N). It follows
that

This relation implies (14), but not vice-versa, so for a Z^in variant system
we can take the rotation symmetries to be equations (15)-(18).
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From (10), £a Fpq(a) = 1. Summing (16) over a, it follows that

Fourier Transformed Equations. Let a> = e\p(2ni/N) and
define, for all integers r,

Then Fp<}(Q) = 1 and the rotation symmetries can be written in the Fourier
transformed form

Without loss of generality, in these equations we can take r = I,..., N— 1.
Also, from (13), the expectation value of of (for a spin a deep inside

the homogeneous lattice) is

and is independent of p.
It can be convenient to work not with Fpl/(\),..., Fpq(N— 1), but with

their ratios:

Then the equations become, for r = 1,..., N,
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4. EQUATIONS FOR THE CHIRAL POTTS MODEL

The above remarks apply to any Z^invariant edge interaction model
satisfying the star-triangle and inversion relations (4), (5). For instance
they apply to the critical case of the original Potts model (Section 12.5 of
ref. 10). Now we focus on the model that interests us here: the chiral Potts
model. Let k, k' be two real constants (moduli) such that
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We also have the normalization condition

and

and let ap, bp, cp, dp be four complex numbers satisfying the homogeneous
relations:

It follows that they also satisfy

We take p to be the point (ap, bp, cp, dp) on this homogeneous curve. Take
q to be another such point (aq,bq,cq, dq). Then, from ref. 6,

From this and (20), it follows that

so the second equation in (24) becomes
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The operator R is defined by

We shall also use the operator M:

It satisfies the relation RM = M~1R.
Replacing q by Mq in (30) merely multiplies Wpq(n) by u>~", and

Wpq(n) by co". It follows that replacing p by Mp in Fig. 9 multiplies the
partition function Z(a) by co". The same is true if we replace q in the figure
by M~V From (10), (20), (23) we therefore obtain the additional rela-
tions

This completes our list of functional relations satisfied by Fpq(a),
FP9(>")> and Gpq(r). The remainder of this paper is concerned with attempts
to solve them.

5. ISING CASE

When N = 2, each spin has two possible states and the chiral Potts
model reduces to the Ising model. In this case there is a straightforward
and useful parametrization of the functional relations in terms of Jacobi's
elliptic functions (Section 3 of ref. 11). For any p there exists a complex
number up such that

where H(u), HI(U), &\(u), 0(u] are the elliptic theta functions of modulus
k and argument u. The restrictions (28), (29) are then satisfied, for all up.
Substituting these expressions into (30) and setting u — uq — up, we obtain
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where scd(w) = sn(w/2)/[cn(w/2) dn(w/2)]. If J, J are the usual (dimen-
sionless) Ising model interaction coefficients, then Wpq(\) = exp(— 2J),
H^(l) = exp(-2j)and

and sinh 2Jsinh 2J= I/A:'. Also, using (7),

where sdc(w) = sn(w/2) dn(w/2)/cn(w/2).
Note that up and uq enter Wpq( 1) and Wpq( 1) only via their difference

u = uq — up (this "difference property" holds for most planar models, but
fails for the general chiral Potts model with N>2). The same must there-
fore be true for FM(a), Fpq(j) and Gpq(j), so we can define a function G(u)
such that

The functional relations (24), (25), (31), (34) become

and the spontaneous magnetization is

5.1. Zero-Temperature Limit

When k' is small and 0 < Re(«9 - Up) < K, then Wpq( 1) and Wpq( 1) are
also small:
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and K'->n/2. If uq — up,, up — up,, uq, — up, in Fig. 9 all have real part
between 0 and K, then the dominant contributions to Fpq(a) come from all
spins other than a being zero.

It follows that, for -K<Re(uq-up)<K

(Note that up, and uq, cancel out of FM(a), as they should.) Hence
FP9(\) = 1 -2e~n(2K-"i+upV(2K"> and, for -K< Re u < K,

Using similar arguments for the first and third of the special line con-
figurations shown in Fig. 13, we find that to leading order log G(u) is given
by the single formula

over the larger range — 2K< Re u < 2K. (The last term comes from the first
configuration, where we also have to include the contribution to Fpg(\)
from the state where spins b and c in Fig. 14 are both one.)

We can in principle develop a series expansion directly for
FM(\)/Fpq(Q)\ each terms will be proportional to e

m"l(2K'\ where n is an
odd (positive or negative) integer.

5.2. Nonzero Temperature: Solution for G(u]

The above remarks suggest that log G(u) may be analytic in the verti-
cal strip — K^Reu^K. We assume this.

The functional relations (also known as difference equations) (41) then
(and only then) determine G(u) uniquely. One way to solve them is to note
that log G(u) is anti-periodic of period 2iK', so has a Fourier expansion of
the form

where
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and the prime indicates that the sum (and all sums in this sub-section) is
over positive odd integers «, i.e., n= I, 3, 5,.... The coefficients gn, g_n are
to be determined.

From 8.146.20-22 of ref. 30, for 0 < Re w < 2K,

where

Taking logarithms of (41) and equating Fourier coefficients, we can solve
for gn and g_n to obtain

provided -4K<Re u<2K.
It follows that

So from (42) and Eq. 8.197.4 of ref. 30

which is the Onsager-Yang result'31-32' for the spontaneous magentization
of the Ising model.

Because of the "double pole" factor (1 +x")2 in (51), G(u) is not peri-
odic of period 2K, or 4K, or any integer multiple of K. However, the
product G(u) G(—u) is. In fact

so G(u)G( — u) is anti-periodic of period 4K. This suggests that this
product may be an algebraic function of the original parameters ap,..., dg,
and indeed we can verify that

The above result Jt\ = G(0) =kl/4 follows immediately.



From Fig. 6, replacing p, q by Rq, Rp is equivalent to taking the special
rapidity lines to be above the spin a, rather than below, so Lpq(r) is in
some sense a product of these two situations. In fact, if one considers two
independent chiral Potts models, one on the graph IS, and the other on the
graph formed by putting spins on the shaded (rather than unshaded) faces
of $£, one can then formulate a vertex model on <£ by assigning states to
the edges of $£ which are the sum (or an appropiately ordered difference)
of the spins on either side of the edge (much as the eight-vertex model can
be formed from two Ising models—Section 10.3 of ref. 10—but without the
four-spin interaction between them). If one does this, one obtains precisely
Lpq(r] as the ratio of the Fourier transforms of the edge correlation func-
tions.

From (24), (25), (31), (34), (26) we obtain the following functional
relations for Lpq(r] and Jtr, for r = 1,..., N, with Lpq(N+ 1) = Lpq( 1):

From the first relation, LqiRp(r) = LptR-\q(r). Making this substitution
in the RHS of the second relation, then iterating N times, we obtain

so Lpq(r) is periodic or anti-periodic under q -> RZNq. The same is true for
p -» R2Np. Neither is true for Gpq(r).

For N = 2, Lpq(\) = G(u)G(-u}, so Lpq(\) is given by (55). These
observations suggest that Lpq(r] may be an algebraic function of ap,..., dq

for all N. More strongly, it may be a meromorphic function on an extended
surface, where its values on different surfaces differ by only a sign or a
phase factor co", as in the N = 2 Ising case.

518 Baxter

6. A PRODUCT FUNCTION

Let us define one more function
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6.1. Possible Zeros and Poles

Let us postulate a function &pl/(i, j, m) on the ap,..., dq surface, which
is analytic and has a zero, which is simple, only when

Here c is an uninteresting normalization factor. The function 0pl/( /, j, m)
may be multiple-valued, but its values should differ only by non-zero
analytic factors. ( The precise nature and even the existence of these func-
tions is not really significant here. We are merely using them as a device
to count the poles and zeros of Lpll(r}.} Then, to within non-zero analytic
factors,

Then, for instance, 0pli(i,j,m) is a factor of cpal/ — corapct/ when and
only when / — m = r, so to within non-zero analytic factors

In this way one finds the N = 2 result (55) can be written

For general N, we assume that LM(r) only has poles or zeros at the
zeros of the Opq(i, j, m}, so we try:

where each oc(/, /', m) is an integer. The last of the relations (57 ) ensure that
oc(/, j, m) is independent of r.
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Sustituting this ansatz into the remaining relations (57) we obtain

for all integers /, j, m, mod N, the sum being over m = 0,..., N—\. This is
a linear set of equations. Its general solution is any particular solution plus
the general solution of the homogeneous relations, which implies that there
exist functions (not necessarily integers) /?(/, j), y(i, j) such that

where

for all integers /, j, mod N.
Let /?, y be the N by N matrices with elements /?(/, j), y(i, j), for

i, 7 = 0,..., N— 1. Then for N = 2, the general solution of (65) is

(e.g., y ( l , 0 ) = —v— 1/2). here u and v are arbitrary integer parameters. We
can fix one of them by noting that we expect Lpp(r) to be finite and non-
zero, so cannot contain a factor 0pq(0, 0, 0) and hence

This implies u = 0. The number of poles and zeros of Lpq(r) is minimized
by choosing v = 0, giving

and indeed this is the known result (61).
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For /V = 3, the general solution of (65) is

There is a redundancy in this: when we substitute into (64) we find that
s, u, v, w occur only via their differences, so without loss of generality we
can choose s = 0. The requirement (67) implies that u= I, so we are left
with just v and w as arbitrary variables.

At this stage we have no further information, so all we can do is to
look for the "simplest" solution for the 27 integers a(;', j, m). Of these, 5 are
already constrained to be zero, 4 are +1, 4 are +1;, 4 are ±w, 2 are
±(v — l), 2 are ±(w— 1) and 6 are ±(v — w). If we arbitrarily require
that Lpq(r] have only simple poles and zeros, then v, w can only take the
values 0 or 1. This gives four possible cases. Writing &pq(i, j, m) simply as
(/, j,m), the two simplest are are:

The other two cases, (v, »v) = (0, 1) and (1 ,0) each have eight poles and
eight zeros and will not be considered further here.

Both the TV = 3 case (i) and the known N = 2 solution (55) are con-
tained in the general-A^ formula Lpq(r) = L(j£(r), where

This satisfies the functional relations (57) and despite appearances is in fact
meromorphic of the form (62), with

(i) v = w = 0: Lpq(r) has four poles and four zeros:

(ii) v = w = 1: it has six poles and six zeros
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At first sight this seems (and seemed) very exciting: an explicit
general-W solution which includes the Ising result. Unfortunately it's
wrong. From (28),

Using these relations, we find that L^(r) = k(N+l~2r}'N for r=\,...,N,
which gives

This differs from the conjecture (1) by a power N/2, and this difference is
manifest at order k'2. Since the conjecture is certainly correct to this order,
(72) must be wrong for N>2: Lpq(r)^ L(^(r),

Yet L^(r) certainly satisfies the functional relations (57): the only
explanation is that it cannot have the correct analyticity properties that are
needed to complete the relations. This makes it clear that functional rela-
tions (or difference equations) do not by themselves uniquely define the
functions: one must have extra insight into the analyticity properties in
some fundamental domain. (Another example of this is provided by the
three-dimensional Zamolodchikov model [23].)

Since L(°J(r) is a solution (albeit not the right one) of the functional
relations, if Lpq(r) is of the form (62), then its ratio to L(°j(r) is given by
(62) with «(;', j, m) replaced by the homogeneous solution y(i — j+ I, m). If
we define

(this is the function with a simple zero when aq/bq = ajjap/bp and cq/dq =
a>mcp/dp), then it follows that

For the W = 3 case (ii) solution (71),



Functional Relations for Order Parameters of Chiral Potts Model 523

This still leaves open the question of whether case ( i i ) for A f = 3 correctly
describes Lpq(r), or whether we should be looking at the the other cases,
or whether Lpq(r) is indeed meromorphic, with poles and zeros as in (62).
These problems are currently under investigation. In a subsequent paper
the author intends to discuss the functional relations for the N = 3 case in
terms of the hyperelliptic function parametrization,124'25' and to present
series expansions for Fp9(a), Fpq(j) that should shed some light on these
problems.
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